Press "Enter" to skip to content

Tag: teaching

Drones, not droning on

Late last year I was in Hong Kong to establish our school’s media program at the City University College, and while there I gave an interview to The Standard, which is Hong Kong’s widest circulation English daily newspaper. Here is a reprint of the piece by Kelis Wong.

At first glance, communication studies and drones seem like an unlikely pairing. If the study of how human produces, processes and exchanges information is a subject in the social sciences, then learning how to operate a flying robot will be a matter of engineering.

But think about the purpose of a drone. Apart from the sheer pleasure of controlling an aerial vehicle, a commercial drone performs the function of gathering visual information in the form of pictures and videos for other people to consume.

That’s why Teodor Mitew, senior lecturer in digital media and communication at the University of Wollongong in Australia, kickstarted last year in his classes a technology exploration project called PlayMake Sessions.

“Any technology which allows digitalization, which allows the translation of materials into digital is an object of study for us,” said Mitew.

Every week, Mitew presents to a group of media and communication majors a trolley filled with quadcopters, mini cube action cameras, virtual reality headsets, gesture control devices, computer circuit boards and 3D printers.

One goal of the sessions is to encourage undergraduate students to play with the gadgets, and come up with a novel use for them in their digital lives.

A project, which originated from these sessions, created a digital archive of the university library, translating still images into virtual reality.

In another student project, some first year students started an open page on Facebook, called UOW Admirers, which posts love notes sent in anonymously. One year on, the page is still active, and has become a well-known matchmaking site on campus.

“The process of random experimentation without a goal is very important,” said Mitew. “That’s how students discover the affordance of a medium. So it’s not about me telling them do this and that, it’s about me telling them take the drone and see what happens.”

In the new school year, the University of Wollongong has introduced Mitew’s exploration project to a group of students enrolled in a top-up degree program taught at the community college of the City University of Hong Kong.

The students who take Mitew’s class are asked to engage in classroom activities which some people might find unconventional. A part of the course requires the students to get active on Reddit, Twitter, YouTube and WordPress.

The students also have to write short essays in an exercise which Mitew calls digital artefact. Here are things that the students have to hand in every week: one blog post, three tweets and three online comments.

“You can also make podcasts and memes. I love memes,” said Mitew in his first lecture.

Under the guise of juvenile fun, Mitew explained that his students are acquiring the cognitive skill sets which prepare them for a paradigm shift toward an information economy in which everyone can produce their own digital content from anywhere.

The paradigm shift will affect aspiring media professionals as they will face great career challenges in the proliferation stage of digitization.

“If you are in the legacy media industry, be it news, book publishing, or music and film, this is a terrible challenge because digitization entirely destroys your business model. You cannot charge for your content like you used to do,” said Mitew.

“Look at the content produced today in newspapers, then look at the online content produced by so-called amateurs. A lot of that stuff online are more professionally done, aesthetically more pleasing, and of much better quality.”

“This dichotomy will only increase in size as the pressure on legacy media increases, and as more and more people join the internet to the realization of everyone being a content producer.”

But producing interesting content is a big challenge. Some students will struggle with the task as they are confined by the reality, their educational experiences and the environment, said Mitew.

So, creating materials that others will find amusing is the ultimate goal. Writing on a deadline, writing different copies, making do on the go, and self- directed learning are also the abilities that Mitew expects his students to master.

And by making, aggregating and curating content in the online public sphere, students demonstrate their competencies in these aspects.

“I don’t teach technology. It’s more important to teach students how not to be afraid of technology,” said Mitew.

“We try to prepare our students for a radically different reality, giving them the opportunity to work on a self chosen project in public.”

Teaching digital media in a systemic way, while accounting for non-linearity

Recently I have been trying to formulate my digital media teaching and learning philosophy as a systemic framework. This is a posteriori work because philosophies can be non-systemic, but systems are always based on a philosophy. I also don’t think a teaching/learning system can ever be complete, because entropy and change are the only givens [even in academy]. It has to be understood as dynamic, and therefore more along the lines of rules-of-thumb as opposed to prescriptive dogma.

None of the specific elements of the framework I use are critical to its success, and the only axiom is that the elements have to form a coherent system. By coherence, I understand a dynamic setting where 1] the elements of the system are integrated both horizontally and vertically [more on that below], and 2] the system is bigger than the sum of its parts. The second point needs further elaboration, as I have often found even highly educated people really struggle with non-linear systems. Briefly, linear progression is utterly predictable [x + 1 + 1…= x + n] and comfortable to build models in – i.e. if you increase x by 1, the new state of the system will be x +1. Nonlinear progression by contrast is utterly unpredictable and exhibits rapid deviations from whatever the fashionable mean is at the moment – i.e. x+1= y. Needless to say, one cannot model nonlinear systems over long periods of time, as the systems will inevitably deviate from the limited variables given in the model.

Axiom: all complex systems are nonlinear when exposed to time [even in academy].

The age of the moderns has configured us to think exceedingly in linear terms, while reality is and has always been regretfully non-linear [Nassim Taleb built a career pointing this out for fun and profit]. Unfortunately this mass delusion extends to education, where linear thinking rules across all disciplines. Every time you hear the “take these five exams and you will receive a certificate that you know stuff” mantra you are encountering a manifestation of magical linear thinking. Fortunately, learning does not follow a linear progression, and is in fact one of the most non-linear processes we are ever likely to encounter as a species.

Most importantly, learning has to be understood as paradigmatically opposed to knowing facts, because the former is non-linear and relies on dynamic encounters with reality, while the latter is linear and relies on static encounters with models of reality.

With that out of the way, let’s get to the framework I have developed so far. There are two fundamental philosophical pillars framing the assessment structure in the digital media and communication [DIGC] subjects I have been teaching at the University of Wollongong [UOW], both informed by constructivist pedagogic approaches to knowledge creation [the subjects I coordinate are BCM112, DIGC202, and DIGC302].

1] The first of those pillars is the notion of content creation for a publicly available portfolio, expressed through the content formats students are asked to produce in the DIGC major.

Rule of thumb: all content creation without exception has to be non-prescriptive, where students are given starting points and asked to develop learning trajectories on their own – i.e. ‘write a 500 word blog post on surveillance using the following problems as starting points, and make a meme illustrating your argument’.

Rule of thumb: all content has to be publicly available, in order to expose students to nonlinear feedback loops – i.e. ‘my video has 20 000 views in three days – why is this happening?’ [first year student, true story].

Rule of thumb: all content has to be produced in aggregate in order to leverage nonlinear time effects on learning – i.e. ‘I suddenly discovered I taught myself Adobe Premiere while editing my videos for this subject’ [second year student, true story].

The formats students produce include, but are not limited to, short WordPress essays and comments, annotated Twitter links, YouTube videos, SoundCloud podcasts, single image semantically-rich memetic messages on Imgur, dynamic semantically-rich memetic messages on Giphy, and large-scale free-form media-rich digital artefacts [more on those below].

Rule of thumb: design for simultaneous, dynamic content production of varying intensity, in order to multiply interface points with topic problematic – i.e. ‘this week you should write a blog post on distributed network topologies, make a video illustrating the argument, tweet three examples of distributed networks in the real world, and comment on three other student posts’.

 2] The second pillar is expressed through the notion of horizontal and vertical integration of knowledge creation practices. This stands for a model of media production where the same assessments and platforms are used extensively across different subject areas at the same level and program of study [horizontal integration], as well as across levels and programs [vertical integration].

Rule of thumb: the higher the horizontal/vertical integration, the more content serendipity students are likely to encounter, and the more pronounced the effects of non-linearity on learning.

Crucially, and this point has to be strongly emphasized, the integration of assessments and content platforms both horizontally and vertically allows students to leverage content aggregates and scale up in terms of their output [non-linearity, hello again]. In practice, this means that a student taking BCM112 [a core subject in the DIGC major] will use the same media platforms also in BCM110 [a core subject for all communication and media studies students], but also in JOUR102 [a core subject in the journalism degree] and MEDA101 [a core subject in media arts]. This horizontal integration across 100 level subjects allows students to rapidly build up sophisticated content portfolios and leverage content serendipity.

Rule of thumb: always try to design for content serendipity, where content of topical variety coexists on the same platform – i.e. a multitude of subjects with blogging assessments allowing the student to use the same WordPress blog. When serendipity is actively encouraged it transforms content platforms into so many idea colliders with potentially nonlinear learning results.

Adding the vertical integration allows students to reuse the same platforms in their 200 and 300 level subjects across the same major, and/or other majors and programs. Naturally, this results in highly scalable content outputs, the aggregation of extensively documented portfolios of media production, and most importantly, the rapid nonlinear accumulation of knowledge production techniques and practices.

On digital artefacts

A significant challenge across academy as a whole, and media studies as a discipline, is giving students the opportunity to work on projects with real-world implications and relevance, that is, projects with nonlinear outcomes aimed at real stakeholders, users, and audiences. The digital artefact [DA] assessment framework I developed along the lines of the model discussed above is a direct response to this challenge. The only limiting requirements for a DA are that 1] artefacts should be developed in public on the open internet, therefore leveraging non-linearity, collective intelligence and fast feedback loops, and 2] artefacts should have a clearly defined social utility for stakeholders and audiences outside the subject and program.

Rule of thumb: media project assessments should always be non-prescriptive in order to leverage non-linearity – i.e. ‘I thought I am fooling around with a drone, and now I have a start-up and have to learn how to talk to investors’ [second year student, true story].

Implementing the above rule of thumb means that you absolutely cannot structure and/or limit: 1] group numbers – in my subjects students can work with whoever they want, in whatever numbers and configurations, with people in and/or out of the subject, degree, university; 2] the project topic – my students are expected to define the DA topic on their own, the only limitations provided by the criteria for public availability, social utility, and the broad confines of the subject area – i.e. digital media; 3] the project duration – I expect my students to approach the DA as a project that can be completed within the subject, but that can also be extended throughout the duration of the degree and beyond.

Digital artefact development rule of thumb 1: Fail Early, Fail Often [FEFO]

#fefo is a developmental strategy originating in the open source community, and first formalized by Eric Raymond in The Cathedral and the Bazaar. FEFO looks simple, but is the embodiment of a fundamental insight about complex systems. If a complex system has to last in time while interfacing with nonlinear environments, its best bet is to distribute and normalize risk taking [a better word for decision making] across its network, while also accounting for the systemic effects of failure within the system [see Nassim Taleb’s Antifragile for an elaboration]. In the context of teaching and learning, FEFO asks creators to push towards the limits of their idea, experiment at those limits and inevitably fail, and then to immediately iterate through this very process again, and again. At the individual level the result of FEFO in practice is rapid error discovery and elimination, while at the systemic level it leads to a culture of rapid prototyping, experimentation, and ideation.

Digital artefact development rule of thumb 2: Fast, Inexpensive, Simple, Tiny [FIST]

#fist is a developmental strategy developed by Lt. Col. Dan Ward, Chief of Acquisition Innovation at USAF. It provides a rule-of-thumb framework for evaluating the potential and scope of projects, allowing creators to chart ideation trajectories within parameters geared for simplicity. In my subjects FIST projects have to be: 1] time-bound [fast], even if part of an ongoing process; 2] reusing existing easily accessible techniques [inexpensive], as opposed to relying on complex new developments; 3] constantly aiming away from fragility [simple], and towards structural simplicity; 4] small-scale with the potential to grow [tiny], as opposed to large-scale with the potential to crumble.

In the context of my teaching, starting with their first foray into the DIGC major in BCM112 students are asked to ideate, rapidly prototype, develop, produce, and iterate a DA along the criteria outlined above. Crucially, students are allowed and encouraged to have complete conceptual freedom in developing their DAs. Students can work alone or in a group, which can include students from different classes or outside stakeholders. Students can also leverage multiple subjects across levels of study to work on the same digital artefact [therefore scaling up horizontally and/or vertically]. For example, they can work on the same project while enrolled in DIGC202 and DIGC302, or while enrolled in DIGC202 and DIGC335. Most importantly, students are encouraged to continue working on their projects even after a subject has been completed, which potentially leads to projects lasting for the entirety of their degree, spanning 3 years and a multitude of subjects.

In an effort to further ground the digital artefact framework in real-world practices in digital media and communication, DA creators from BCM112, DIGC202, and DIGC302 have been encouraged to collaborate with and initiate various UOW media campaigns aimed at students and outside stakeholders. Such successful campaigns as Faces of UOW, UOW Student Life, and UOW Goes Global all started as digital artefacts in DIGC202 and DIGC302. In this way, student-created digital media content is leveraged by the University and by the students for their digital artefacts and media portfolios. To date, DIGC students have developed digital artefacts for UOW Marketing, URAC, UOW College, Wollongong City Council, and a range of businesses. A number of DAs have also evolved into viable businesses.

In line with the opening paragraph I will stop here, even though [precisely because] this is an incomplete snapshot of the framework I am working on.

Learning through interleaving

Having been in and out of academy for the last, scary number, 16 years, both as a student and lecturer, I have a long list of convictions on what constitutes good learning practice. These have formed, without exception, as a result of frontal clashes with the common-sense notions of good learning practice in higher education. Sitting in class and listening to a lecturer, working in groups, taking notes and /or memorizing lecture notes, passing exams (my favorite) – the list is familiar to everyone with a degree or the aspirations to get one. Bottom line is that the pernicious notions that learning happens in organized time-blocks, and that the best learning practices manifest themselves through instant-recall have contributed tremendously towards the boxed-content assembly line we call higher education. What we produce is students capable of remembering the answer to a question, who excel at obediently taking exams.

There is an alternative to learning though, to my knowledge first charted by Vygotsky, who used the metaphor of scaffolding to describe it. I try and shape my subjects in accordance with this, constructivist, approach whereby the learning process happens dynamically, in an open location (that is, the students decides where), and is assessed through the regular, dynamic production of content, with the separate assessments integrated into a higher-order whole. For example, students produce weekly content consisting of research, reflection, and mini fact-finding missions; they read and comment on each-other’s content; they may use the annotated sources from their fact-finding missions as building blocks towards a group project, or a longer research and reflection piece; they may use that piece to look back and reflect on the issues they identified, etc. The intention is to create a modular, scaffolding-like platform of content production and assessment which can be tailored towards particular topics, problems, and end-tasks.

I have been looking for a new metaphor to describe this approach, and today found it in the work of Robert Bjork from the UCLA Learning and Forgetting Lab, who coins the term ‘interleaving’ to describe the effect of engaging with a topic or a problem on several different levels of intensity simultaneously. The problem is how to design subject materials relying on constant feedback and reflection, so as to maximize the recall function of memory and the relaitonality of knowledge.